

BK BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS SENIOR SECONDARY CO-ED DAY CUM BOYS' RESIDENTIAL SCHOOL

MID-TERM EXAMINATION 2023-24

APPLIED MATHEMATICS (241)

Class : X	XII Commerce	Duration: 3 Hrs.
Date :	18-10-2023 MARKING SCHEME	Max. Marks: 80
Question	Answer	Scheme
1	A is a matrix of order 2x3 and B is a matrix of order 3x2. Product AB is defined and F	Product Answer
	BA is also defined. Order (AB)=2x2. Order (BA)=3x3	C
2	It satisfies the condition that elements equidistant from leading diagonal are equal but opposite in sign. Therefore, it is a skew symmetric matrix	in value Answer C
3	In general, product of two matrices are not commutative. Therefore, -AB and BA ca cancelled.	nnot get Answer C
4	Product of AB both of order 3x3 should be calculated. Now $C(1,3)$ entry = $y + 0 + compared$ with zero as per the identity matrix of order 3x3.	x. It is Answer A
5	Compare both determinants; $3x^2 - 20 = -8 - (-15)$; $3x^2 = 7 + 20$; $x^2 = 9$ Therefore, $x = 3$	Answer C
6	Determinant of the matrix = 0 as it is given singular. $ A = 1(9x - 6x^{2}) - 3(9 - 4x^{2}) + 9(6 - 4x) = 9x - 6x^{2} - 27 + 12x^{2} + 54 - 6x^{2} - 27x + 27 = 0 \text{ or } (2x - 3)(x - 3) = 0 \text{ or } x = \frac{3}{2} \text{ or } 3$	36x = 0 C Answer
7	Determinant of A = a^3 . But $ adj A = A ^2$. Therefore, $ adj A = A ^2 = (a^3)^2 = a^6$	Answer C
8	It can be simplified as $y^2 = x + y$. Differentiate the equation implicitly we get,	Answer
	$2y \times \frac{dy}{dx} = 1 + \frac{dy}{dx}$. When simplified we get, $\frac{dy}{dx} = \frac{1}{2y-1}$	С
9	Parametric form: $x = t^2$ becomes $\frac{dx}{dt} = 2t$	Answer
	$y = t^3 \ becomes \frac{dy}{dt} = 3t^2. \ \text{Now} \ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3t^2}{2t} = \frac{3}{2}t$ $\text{Now} \ \frac{d^2y}{dx^2} = \frac{3}{2} \times \frac{dt}{dx} = \frac{3}{2} \times \frac{1}{2t} = \frac{3}{4}t$	D
	ax^2 2 ax 2 2t 4t	
10	Given $x^2 + xy + y^2 = 0$. Differentiate with respect to x; $2x + x\frac{dy}{dx} + y(1) + 2y\frac{dy}{dx} = 0$ or $(x + 2y)\left(\frac{dy}{dx}\right) = -(2x + y)$ or $\frac{dy}{dx} = -\frac{2x+y}{x+2y}$	Answer B
11	Let $u = \log x$ and $v = \frac{1}{x}$ Now $\frac{du}{dx} = \frac{1}{x}$ and $\frac{dv}{dx} = -\frac{1}{x^2}$ Further $\frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \frac{1}{x} \times \left(-\frac{x^2}{1}\right) = -x$	Answer C
12	Equation of the curve $y = e^{2x}$. Now $\frac{dy}{dx} = e^{2x} \times 2$.	Answer
	Slope of the tangent at (0, 1) is $\frac{dy}{dt} at(0,1) = e^{2(0)} \times 2 = 2$	C
	Equation of the tangent is $y - 1 = 2(x - 0)$ or $y - 1 = 2x$	

VIIC

13	Polynomial $f(x) = x^3 - 18x^2 + 96x$ and hence $f'(x) = 3x^2 - 36x + 96$	Answer
	Now $f'(x) = 0$ implies $x^2 - 12x + 32 = 0$ or $(x - 8)(x - 4) = 0$.	D
	Stationary points are $x = 4$ and $x = 8$.	
	The smallest value of the polynomial is 0. It happens at 0 given in $[0, 9]$	
14	Cost function $C(x) = 30x + 240$ and Revenue function $R(x) = 45x$.	Answer
	Breakeven point is obtained when $R(x) = C(x)$	D
	Now $45x = 30x + 240$. Therefore, $15x = 240$. Hence $x = 16$	
15	Population is denoted by the symbol μ . FALSE	Answer
	Population is not a statistic. FALSE.	D
16	If p value $\leq \alpha$ then Reject Ho. It means reject null hypothesis.	Answer
		А
17	A fire in a factory delaying production for some time, happens unexpected, very rarely.	Answer
		D
18	3 monthly moving averages calculated from 5 data would have 3 entries.	Answer
		В
19	Assertion: False Revenue function $R(x) = px = 200x - \frac{x^3}{x}$.	Answer
	$dR = 200$ $\frac{3}{3}$	D
	Marginal Revenue $MR = \frac{1}{dx} = 200 - x^2$; MR at $x = 10$ is $200 - 10^2 = Rs$. 100	
	Reason: True	
20	Assertion: True	Answer
	Reason: True	В
	But reason is not in support of the Assertion statement.	

21	Comparing entries in two equal matrices, we have $3y + 1 = 16 \text{ or } 3y = 15 \text{ or } y = 5$	1
	Take $x + y = 8$. We come to know $x = 8 - y = 8 - 5 = 3$	0.5
	Now $y - x = 5 - 3 = 2$ is the answer	0.5
22	A is a 3x3 matrix. Given $ A = 4$	1
	Now $ 2A = 2^3 A = 8 \times 4 = 32$ is the answer	1
23	Apply log on both sides, then $log y = y log x$.	0.5
	Differentiate with respect to x, we get $\frac{1}{y} \times \frac{dy}{dt} = y \times \frac{1}{y} + \log x \times \frac{dy}{dt}$	1
	$\frac{y}{2}$ $\frac{y}{2}$ $\frac{y}{2}$ $\frac{dx}{dx}$ $\frac{dx}{dx}$	0.5
	When simplified $\frac{dy}{dx} = \frac{x}{1 + \log x} = \frac{y^2}{x(1 - y\log x)}$	
	$\frac{ux}{y} = \frac{-\log x}{1} \frac{x(1-y\log x)}{1}$	
OR	Given $y = x^3 \log x$ then $\frac{dy}{dx} = x^3 \times \frac{1}{x} + \log x \times 3x^2 = x^2 + 3x^2 \log x$	1
	Now $\frac{d^2y}{d^2y} = 2r + 3r^2 \times \frac{1}{2} + \log r \times 6r = 5r + 6r \log r$ is the answer	1
	$dx^2 = 2x + 5x + x$	
24	Number of items $n = 50$, nonulation standard deviation $\sigma = 6$. Somple mean $\bar{x} = 22$	0.5
24	Number of items $n = 50$, population standard deviation $\delta = 6$. Sample mean $x = 52$	0.5
	Confidence level = 95%. It means $1 - \alpha = 0.95; \alpha = 0.05; \frac{1}{2} = 0.025$	0.5
	Therefore, $Z_{\alpha/2} = Z_{0.025} = 1.96$ from area table of values	
	Now Margin of Error = $Z_{\underline{\alpha}} \times \frac{\sigma}{\sqrt{\pi}} = 1.96 \times \frac{6}{\sqrt{\pi}} = 1.96 \times 0.848 = 1.66$	0.5
	$x_{2} = \bar{x} + margin of error = 32 + 1.66$	0.5
	Confidence interval = $(32 - 1.66, 32 + 1.66) - (30.34, 33.66)$	0.5
	(30.31, 33.00)	
25	Cost function $C(x) = 24000 + 2x$ and Revenue function $R(x) = 8x$	1
	To find breakeven point we take $R(x) = C(x)$ then $8x = 24000 + 2x$	1
	We get $6x = 24000$ and so $x = 4000$ Rs.	_

26	Eqn(1)x2, $4x - 2y = \begin{bmatrix} 12 & -12 & 0 \\ 0 & 4 & 2 \end{bmatrix}$	0.5				
	$\begin{bmatrix} 1-8 & 4 & 2 \end{bmatrix}$ For (2), $x + 2y = \begin{bmatrix} 3 & 2 & 5 \end{bmatrix}$					
	$\begin{bmatrix} -2 & 1 & -7 \end{bmatrix}$					
	Adding both equations, $5x = \begin{bmatrix} -10 & 5 & -5 \end{bmatrix}$					
	Therefore, $x = \begin{bmatrix} 3 & -2 & 1 \\ -2 & 1 & -1 \end{bmatrix}$					
	Now $y = 2x - \begin{bmatrix} 6 & -6 & 0 \\ -4 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & -4 & 2 \\ -4 & 2 & -2 \end{bmatrix} - \begin{bmatrix} 6 & -6 & 0 \\ -4 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 2 \\ 0 & 0 & -3 \end{bmatrix}$					
27	Apply transformations $R_2 = R_2 - 4R_1$ and $R_3 = R_3 - 8R_1$	1				
	Now $\begin{vmatrix} x + y & x & x \\ x & 0 & -2x \end{vmatrix} = -x(-5x^2 + 4x^2) = x^3$	1				
	$\begin{vmatrix} 2x & 0 & -5x \end{vmatrix}$					
OR		0.5				
	Coefficients D = $\begin{vmatrix} 1 & 2 & 3 \\ 1 & 3 & 4 \end{vmatrix}$ = 1(8 - 9) - 1(4 - 3) + 1(3 - 2) = -1 - 1 + 1 = -1	0.5				
	$\begin{bmatrix} -1 & 1 & 1 \\ 4 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1(0 & 0) & 1(1(-10) + 1(12 - 12)) \\ 1(1(-10) + 1(12 - 12)) \end{bmatrix} \begin{bmatrix} 1 + 2 \\ 1 + 2 \end{bmatrix} = 1$					
	$\begin{bmatrix} D1 = \begin{bmatrix} -4 & 2 & 3 \end{bmatrix} = -\begin{bmatrix} 1(6-9) - 1(16-16) + 1(12-12) \end{bmatrix} = -\begin{bmatrix} -1+2 \end{bmatrix} = -1$ $\begin{bmatrix} -6 & 3 & 4 \end{bmatrix}$	0.5				
	$\begin{vmatrix} 1 & -1 & 1 \\ 0 & 2 & -1 & -4 & 3 \end{vmatrix} = -[1(16 - 18) - 1(4 - 3) + 1(6 - 4)] = -1[-2 - 1 + 2] = 1$	0.5				
	$\begin{vmatrix} 1 & 1 & -1 \\ 1 & 2 & -4 \end{vmatrix} = -[1(12 - 12) - 1(4 - 3) + 1(6 - 4)] = -[-1 + 2] = -1$	0.5				
	$\begin{vmatrix} 1 & 3 & -6 \end{vmatrix}$ Therefore $x = {}^{D_1} = {}^{-1} = 1, x = {}^{D_2} = {}^{1} = -1, z = {}^{D_3} = {}^{-1} = 1$	0.5				
	Therefore, $x = \frac{1}{D} = \frac{1}{-1} = 1$; $y = \frac{1}{D} = \frac{1}{-1} = -1$; $z = \frac{1}{D} = \frac{1}{-1} = 1$					
28	Differentiating we get $2ax + 2h\left(x \times \frac{dy}{dx} + y \times 1\right) + 2b \times \frac{dy}{dx} + 2g + 2f \times \frac{dy}{dx} + 0 = 0$	1				
	So, $(2hx + 2by + 2f)\frac{dy}{dx} = -2ax - 2hy - 2g$	1				
	Dividing by 2, $\frac{dy}{dy} = -\left(\frac{ax+hy+g}{hx+hy+g}\right)$	1				
	ax (nx+by+f)					
29	Volume of cylindrical container = $V = \pi r^2 h$	1				
	Differentiating with respect to time, $\frac{dv}{dt} = \pi r^2 \left(\frac{du}{dt}\right)$; $314 = \pi \times 10^2 \left(\frac{du}{dt}\right)$	1				
	Therefore, $\frac{dt}{dt} = \frac{311}{3.14 \times 100} = 1 m/hr$	1				
OR	Cost of production $C(x) = 300 x^2 + 4200x + 13500$	1				
	Revenue function $R(x) = 8400x$. Breakeven point is when $R(x) = C(x)$					
	Therefore, $8400x = 300x^2 + 4200x + 13500$; $300x^2 - 4200x + 13500 = 0$ Simplified form is $x^2 - 14x + 45 = 0$; $(x - 9)(x - 5) = 0$; $\therefore x = 9 \text{ or } x = 5$	1				
		1				
30	Differentiating we get $a2y \times \frac{dy}{dx} = 3x^2; \frac{dy}{dx} = \frac{3x^2}{2ay}$	1				
	Slope of the tangent at $(am^2, am^3)is = m = \frac{3a^2m^4}{2a^2m^3} = \frac{3m}{2}$	1				
	Equation of the tangent is $y - am^3 = \frac{3m}{2}(x - am^2)$	1				
	That is, $2y - 2am^3 = 3mx - 3am^3$; $3mx - 2y = am^3$ is the equation of tangent					
31	Test statistic $t = \frac{\bar{x} - \mu}{103 - 100} \times \sqrt{65} = \frac{3 \times 8.062}{100} = \frac{24.186}{100} = 2.10 > 0$	1				
	Degrees of freedom = $n - 1 = 64$					
	So, p-value of 2.10 = 2 x area under t-distribution curve to the right of t.From t-distribution					
	table, we find $t = 2.10$ lies between 1.998 and 2.386 for which area lies between 0.010 and	1				

0.025, so p-values lies between $2x0.010$ and $2x0.025$. that is, 0.020 and 0.050.
Since $0.020 , Reject null hypothesis.$

22			281 -					1
32	Population proportion $\bar{p} = \frac{281}{611} = 0.4599$							
	Margin of Error = $Z_{\underline{\alpha}} \times \sqrt{\frac{\overline{p}(1-\overline{p})}{1-\overline{p}}} = Z_{0.05} \times \sqrt{\frac{0.45 \times 0.54}{1-\overline{p}}} = 1.645 \times \sqrt{\frac{0.2484}{1-\overline{p}}} = 1.645 \times \sqrt{0.00040}$							1
	$=1.645 \times 0.02$	$\frac{1}{2}$	N^{n}	η θ11	N	110		1
	=1.645 × 0.02015 = 0.0332 At 00% confidence interval $\alpha = 0.1$ and hence $\alpha = 0.05$							1
			-(0.4267.0.4)	(21)	0.05			1
	Interval is $(p \pm ME) = (0.4267, 0.4931)$							
33		Year	у	x = t - 2004	<i>x</i> ²	xy		1
		2001	30	-3	9	-90		
		2002	35	-2	4	-70		1
		2003	36	-1	1	-36		
		2004	32	0	0	0		1
		2005	37	1	1	37		1
		2006	40	2	4	80		Ţ
		2007	36	3	9	108		1
		Total	$\sum y = 246$	$\sum x = 0$	$\sum x^2 = 28$	$\sum xy = 29$		-
	$a = \sum_{y=246}^{y=246} = 25.14$ and $b = \sum_{y=29}^{y=29} = 1.026$							
	$u = \frac{1}{n} = \frac{1}{7} = 35.14 \text{ unu } b = \frac{1}{\Sigma x^2} = \frac{1}{28} = 1.036$							
	The required equation of the trend line is $y = 35.14 + 1.036x$							
	Trend value for the year 2008 is $y = 35.14 + 1.036 \times (2008 - 2004) = 39.284$							
34	Given $c(x) = \frac{x^3}{x^3} + 3x^2 - 7x + 16$						1	
	$\int dc = \frac{1}{3} + \frac{1}{3}$							
	Marginal cost function is $\frac{dx}{dx} = x^2 + 6x - 7$							1
	Average cost function is $AC = \frac{C(x)}{x} = \frac{x^2}{3} + 3x - 7 + \frac{16}{x}$							1
	Marginal average cost MAC = $\frac{dAC}{dx} = \frac{2x}{2} + 3 - \frac{16}{x^2}$							1
	$x(MC) = x^{3} + 6x^{2} - 7x - \frac{x^{3}}{x^{3}} - 3x^{2} + 7x - 16 - 2x = 16$							Ţ
	$\left \frac{x(MC) - c(x)}{x^2} = \frac{x^2 + 6x^2 - 7x - \frac{3}{3} - 3x^2 + 7x - \frac{16}{3}}{x^2} = \frac{2x}{2} + 3 - \frac{16}{x^2}\right $						1	
	x^2 x^2 3 x^2							
OR	Volume of the	open	box = V = (18)	(-2x)(18-2x)	x = 324x - 7	$2x^{2} + 4x^{3}$		1
	dv			2 40	,			1
	$\frac{1}{dx} = 324 - 1$	44x +	$12x^2 = 12(x)$	$x^2 - 12x + 27$				1
	If $\frac{dv}{du} = 0$, then	n(x-	(x-3) = 0	. Therefore, v is i	maximum whe	n x = 3		1
	Maximum volu	ume =	$(18 - 2 \times 3)(1)$	$(8 - 2 \times 3)3 =$	$12 \times 12 \times 3 =$	432 sa.cm		1
		-	/ (-	- , -	-	<u> </u>		
35	First derivative	$e \frac{dy}{dx} =$	$x^3 \times \frac{1}{\frac{1}{2}} \times \frac{-1}{r^2} +$	$\log\left(\frac{1}{x}\right) \times 3x^2 =$	$= -x^2 + 3x^2 lo$	$\log\left(\frac{1}{x}\right)$		1
	dy ,		x ~	2 2 2 2		~~~/		1
	$\left \frac{dx}{dx}\right = -x^2 + 3$	$3x^2 \log$	$1 - 3x^2 \log x$	$= -x^2 - 3x^2 \log x$	g x			-
	$\frac{d^2y}{dx^2} = -2x - 3x^2 \times \frac{1}{2} - \log x \times 6x = -5x - 6x \log x$						1	
	$\frac{dx^2}{x} = \frac{x}{x} + \frac{2x^2}{x^2} = x(-5x - 6x \log x) - 2(-x^2 - 2x^2 \log x) + 2x^2$							
	$= -5x^2 - 6x^2 \log x + 2x^2 + 6x^2 \log x + 3x^2 = 0$						1	
							1	

OR	Let $u = x^{\sin x}$ then $\log u = \sin x \times x$	1
	Differentiating we get $\frac{1}{u} \times \frac{du}{dx} = \sin x \times 1 + x \times \cos x$	1
	Therefore, $\frac{du}{dx} = x^{\sin x} (\sin x + x \cos x)$	1
	Let $v = \log x^x$ then $\log v = x \times \log x$	1
	Differentiating we get $\frac{1}{v} \times \frac{dv}{dx} = x \times \frac{1}{x} + \log x \times 1$	4
	Therefore, $\frac{dv}{dx} = \log x^x (1 + \log x)$	T
	Finally, $\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} = x^{\sin x} (\sin x + x \log x) + \log x^x (1 + \log x)$	1

36a	Now $\frac{dy}{dx} = (x+2)(1-0) + (x-3)(1+0) = x+2+x-3 = 2x-1$	1			
36b	Here $x \times 2y \left(\frac{dy}{dx}\right) + y^2 \times 1 = 0$ or $\frac{dy}{dx} = -\frac{y^2}{2xy} = -\frac{y}{2x}$	1			
36c	Differentiating, $\frac{dy}{dx} = \frac{(6-4x)(3)-(3x-2)(-4)}{(6-4x)^2} = \frac{18-12x+12x-8}{(6-4x)^2} = \frac{10}{(6-4x)^2}$	1			
OR	Now $2x + 2y \times \frac{dy}{dy} = 0$; or $\frac{dy}{dy} = -\frac{x}{dy}$	1			
	$\int dx + 2y \wedge \frac{dx}{dx} = 0, 0, \frac{dx}{dx} = y$	1			
37a	Equations formed are $\frac{10x}{100} + \frac{12y}{100} = 2800 \text{ and } \frac{12x}{100} + \frac{10y}{100} = 2700$	0.5			
	In simplified form: $5x + 6y = 140000$ and $6x + 5y = 135000$	0.5			
37b	Product $A^2 = \begin{bmatrix} 5 & 0 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 25 & 0 \\ 5 & 7 \end{bmatrix}$	0.5			
	10 510 51 10 251	0.5			
	we are able to learn that $A^{\circ} = \begin{bmatrix} 0 & 125 \end{bmatrix}$	0.5			
37c	Adding both equations we get $11x + 11y = 275000$; or $x + y = 25000$	1			
	Subtracting them we get $-x + y = 5000$				
	These equations eventually added gives $2y = 30000 \text{ or } y = 15000 \text{ Rs}$.				
	From equation (1) we get $x = Rs$. 10000. These are the two investments in bonds.				
OR	In this context $A = \begin{bmatrix} 5 & 0 \\ 6 & 5 \end{bmatrix}$ is the matrix of coefficients.				
	Now $adj A = \begin{bmatrix} 5 & -6 \\ -6 & 5 \end{bmatrix}$. Further $ adj A = 25 - 36 = -11(= A)$	1			
38a	New monthly charge = $Rs.300 + x$	0.5			
	Total revenue = $R = (300 + x)(500 - x)$	0.5			
38b	Now $\frac{dR}{dx} = (300 + x)(-1) + (500 - x)(1) = -300 - x + 500 - x = 200 - 2x$				
	Critical point is $\frac{dR}{dx} = 0$ implies $200 - 2x = 0$ and hence $x = 100$	0.5			
	At $x = 100$, revenue will be maximum				
38c	Revenue is maximum when the subscription is increased by Rs. 100	1			
	Therefore, number of subscribers left = $500 - 100 = 400$	1			
OR	New charges per subscriber = $Rs.300 + Rs.100 = Rs.400$ and	1			
	The number of subscribers left = 400				
	Maximum revenue generated = $Rs.400 \times 400 = Rs.160000$	1			